Good morning :D
Like i said in the previous article, i will post explanation of every Data Types and this time is about Numeric Data Types (Integer).
Numeric Data Types are consist of such as the integer data types, the floating point, fixed point, bignum or abitory position.
Numeric Types (Integer) Explanation
Integer, you sure have known what an integer is, in computer science, an integer is a datum of integral data type, a data type which represents some finite subset of the mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits. The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware, including virtual machines, nearly always provide a way to represent a processor register or memory address as an integer.
The value of an item with an integral type is the mathematical integer that it corresponds to. Integral types may be unsigned (capable of representing only non-negative integers) or signed (capable of representing negative integers as well).
An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. Some programming languages allow other notations, such as hexadecimal (base 16) or octal (base 8). Some programming languages also permit digit group separators.
The internal representation of this datum is the way the value is stored in the computer's memory. Unlike mathematical integers, a typical datum in a computer has some minimal and maximum possible value.
The most common representation of a positive integer is a string of bits, using the binary numeral system. The order of the memory bytes storing the bits varies; see endianness. The width or precision of an integral type is the number of bits in its representation. An integral type with n bits can encode 2n numbers; for example an unsigned type typically represents the non-negative values 0 through 2n−1. Other encodings of integer values to bit patterns are sometimes used, for example Binary-coded decimal or Gray code, or as printed character codes such as ASCII.
There are four well-known ways to represent signed numbers in a binary computing system. The most common is two's complement, which allows a signed integral type with n bits to represent numbers from −2(n−1) through 2(n−1)−1. Two's complement arithmetic is convenient because there is a perfect one-to-one correspondence between representations and values (in particular, no separate +0 and −0), and because addition, subtraction and multiplication do not need to distinguish between signed and unsigned types. Other possibilities include offset binary, sign-magnitude, and ones' complement.
Some computer languages define integer sizes in a machine-independent way; others have varying definitions depending on the underlying processor word size. Not all language implementations define variables of all integer sizes, and defined sizes may not even be distinct in a particular implementation. An integer in one programming language may be a different size in a different language or on a different processor.
Common Integral Data Types
Note :
- Not all SQL dialects have unsigned datatypes.
- The sizes of char, short, int, long and long long in C/C++ are dependent upon the implementation of the language.
- The sizes of Delphi's Integer and Cardinal are not guaranteed, varying from platform to platform; usually defined as LongInt and LongWord respectively.
- Java does not directly support arithmetic on char types. The results must be cast back into char from an int.
Bytes and octets
The term byte initially meant 'the smallest addressable unit of memory'. In the past, 5-, 6-, 7-, 8-, and 9-bit bytes have all been used. There have also been computers that could address individual bits ('bit-addressed machine'), or that could only address 16- or 32-bit quantities ('word-addressed machine'). The term byte was usually not used at all in connection with bit- and word-addressed machines.
The term octet always refers to an 8-bit quantity. It is mostly used in the field of computer networking, where computers with different byte widths might have to communicate.
In modern usage byte almost invariably means eight bits, since all other sizes have fallen into disuse; thus byte has come to be synonymous with octet.
Words
The term 'word' is used for a small group of bits which are handled simultaneously by processors of a particular architecture. The size of a word is thus CPU-specific. Many different word sizes have been used, including 6-, 8-, 12-, 16-, 18-, 24-, 32-, 36-, 39-, 48-, 60-, and 64-bit. Since it is architectural, the size of a word is usually set by the first CPU in a family, rather than the characteristics of a later compatible CPU. The meanings of terms derived from word, such as longword, doubleword, quadword, and halfword, also vary with the CPU and OS.
Practically all new desktop processors are capable of using 64-bit words, though embedded processors with 8- and 16-bit word size are still common. The 36-bit word length was common in the early days of computers.
One important cause of non-portability of software is the incorrect assumption that all computers have the same word size as the computer used by the programmer. For example, if a programmer using the C language incorrectly declares as int a variable that will be used to store values greater than 215−1, the program will fail on computers with 16-bit integers. That variable should have been declared as long, which has at least 32 bits on any computer. Programmers may also incorrectly assume that a pointer can be converted to an integer without loss of information, which may work on (some) 32-bit computers, but fail on 64-bit computers with 64-bit pointers and 32-bit integers.
Short integer
A short integer can represent a whole number which may take less storage, while having a smaller range, compared with a standard integer on the same machine.
In C, it is denoted by short. It is required to be at least 16 bits, and is often smaller than a standard integer, but this is not required. A conforming program can assume that it can safely store values between −(215−1) and 215−1, but it may not assume that the range isn't larger. In Java, a short is always a 16-bit integer. In the Windows API, the datatype SHORT is defined as a 16-bit signed integer on all machines
Long integer
A long integer can represent a whole integer whose range is greater than or equal to that of a standard integer on the same machine.
In C, it is denoted by long. It is required to be at least 32 bits, and may or may not be larger than a standard integer. A conforming program can assume that it can safely store values between −(231−1) and 231−1, but it may not assume that the range isn't larger.
Long long
In the C99 version of the C programming language and the C++11 version of C++, a long long type is supported that has double the minimum capacity of the standard long, 64 bits. This type is not supported by compilers that require C code to be compliant with the previous C++ standard, C++03, because the long long type did not exist in C++03. For an ANSI/ISO compliant compiler the minimum requirements for the specified ranges, that is −(231) to 231−1 for signed and 0 to 232−1 for unsigned, must be fulfilled; however, extending this range is permitted. This can be an issue when exchanging code and data between platforms, or doing direct hardware access. Thus, there are several sets of headers providing platform independent exact width types. The C standard library provides stdint.h; this was introduced in C99 and C++11.
0 komentar:
Posting Komentar